Effect of Essential Oil of *Ocimum gratissimum* on the Trypanosomatid *Herpetomonas samuelpessoaai*

Fabíola Barbieri HOLETZ1, **Tânia UEDA-NAKAMURA**2, **Benedito Prado Dias FILHO**3, **Diógenes Aparício Garcia CORTEZ**2, **José Andrés MORGADO-DÍAZ**4 and **Celso Vataru NAKAMURA**3

1Estudante de Pós-graduação em Ciências Farmacêuticas; 2Departamento de Farmácia e Farmacologia; 3Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, Paraná; 4Divisão de Biologia Celular, Instituto Nacional do Câncer, Rio de Janeiro, RJ Brazil

Summary. In this study, we reported the effect of the essential oil of *Ocimum gratissimum* on *Herpetomonas samuelpessoaai*, a non-pathogenic trypanosomatid. Parasites were grown at 28 or 37°C, in a chemically defined or a complex medium, containing essential oil obtained from *Ocimum gratissimum*. At concentrations from 20 to 250 µg/ml, the essential oil, progressively inhibited the protozoan growth. The IC50, in defined and complex media, at 28°C were 100 and 91 µg/ml, respectively. Cells cultivated in chemically defined medium were more sensitive to essential oil at concentration of 50, 62.5 and 100 µg/ml in relation to those cultured in complex medium at 37°C. In addition, ultrastructural and enzymatic alterations of the trypanosomatid were also evaluated. *H. samuelpessoaai* exposed to 100 µg/ml of essential oil, in chemically defined medium at 28°C for 72 h, presented considerable ultrastructural alteration, mainly at mitochondrial level, as showed by transmission electron microscopy. Furthermore, cells cultivated in the presence of 100 µg/ml of essential oil showed a decrease of activity of the succinate cytochrome c reductase enzyme, a typical mitochondrion marker, as compared to untreated cells.

Key words: *Herpetomonas samuelpessoaai*, medicinal plants, *Ocimum gratissimum*, ultrastructure.

INTRODUCTION

During the last century the practice of herbalism has become mainstream throughout the world. In spite of the great advances observed in modern medicine, plants still make an important contribution to health care. This is due in part to the recognition of the value of traditional medical systems, particularly of Asian origin, and the identification of medicinal plants from indigenous pharmacopoeias, which have significant healing power. Medicinal plants are distributed worldwide, but they are most abundant in tropical countries (Calixto 2000, Lewis 2001). In Brazil, around 80,000 species of higher plants were described, which offer enormous prospects for discovering new compounds with therapeutic properties.

Among all families of the plant kingdom, members of the Lamiaceae have been used for centuries in folk medicine. *Ocimum gratissimum* L. (Lamiaceae), commonly known as “alfavacú”, is naturally used in the treatment of different diseases, e.g., upper respiratory tract infections, diarrhea, headache, fever, ophthalmic...
and skin diseases, and pneumonia (Corrêa 1932, Onajobi 1986, Ilori et al. 1996). The Ocimum oil is also active against several species of bacteria (Escherichia coli, Shigella, Salmonella and Proteus) and fungi (Trichophyton rubrum and T. mentagrophytes) (El-Said et al. 1969, Begum et al. 1993, Nwosu and Okafor 1995, Nakamura et al. 1999, Orafidiya et al. 2000). Various sister species of O. gratissimum, e.g., O. viride Linn, O. suave Linn, O. basilicum Linn and O. canum Sims, have been reported for their numerous medicinal uses (Mshana et al. 2000).

Diseases caused by protozoa are responsible for mortality in tropical and subtropical countries. At the moment, the number of drugs available for the treatment of human and animal trypanosomiasis, amoebiasis, leishmaniasis, and malaria are limited. Considering the side effects and the resistance that pathogenic protozoan builds against these drugs, more attention should be given to the extracts and biologically active compounds which are isolated from plant species commonly used in herbal medicine (Essawi and Srour 2000).

Protozoa of the Trypanosomatidae family comprise a large number of species, some of which are agents of important illnesses, such as leishmaniasis, Chagas’ disease and African trypanosomiasis. In addition, other non-pathogenic trypanosomatids have emerged as important models for the study of basic biological processes, including RNA editing and trans-splicing, organization of extranuclear DNA, antigenic variation, etc (De Souza and Motta 1999). Herpetomonas samuelpessoai is a non-pathogenic trypanosomatid that shares important antigens with Trypanosoma cruzi, the agent of Chagas’ disease (Souza et al. 1974). H. samuelpessoai can be easily cultivated in a defined medium at 28°C and 37°C, and can induce a humoral and cell-mediated immune response (Roitman et al. 1972). Several Brazilian researcher groups have used this parasite as a model to study the biology of trypanosomatids. So, it may be suitable as a model for screening new trypanocidal drugs.

A previous screening of crude extracts of plants used in traditional medicine showed that the essential oil of O. gratissimum inhibited the growth of H. samuelpessoai (Holetz et al. 2002), however a detailed study of this natural product has not been carried out. In the present study we reported the effect of the essential oil from O. gratissimum on growth, viability, ultrastructural and biochemical alterations of H. samuelpessoai cultivated in defined or complex medium at 28°C and 37°C.

MATERIALS AND METHODS

Plant material. Ocimum gratissimum was collected in Maringá, Paraná, Brazil, identified, and a voucher no. HUM 9.613 is deposited at the Maringá State University Herbarium. Fresh leaves from the plant were cut into pieces and subjected to steam distillation. The distillate was then extracted with petroleum ether, which was removed carefully, and the essential oil was obtained. The oil was then stored at -20°C until needed.

Preparation of stock solutions. The stock solution (10 mg/ml) of essential oil from O. gratissimum was made in a chemically defined medium (Roitman et al. 1972). For this purpose, initially the essential oil was diluted in 2% Tween 80. From the stock solution, dilutions were made to obtain 250, 150, 125, 100, 62.5, 50, and 20 µg/ml. The stock solution of Eugenol (Bionâmica Química e Farmacêutica Ltda) was prepared in a similar way, just considering its density (1.0664 g/ml) (Budavari et al. 1989). Benznidazole (N-benzyl-2-nitro-1-imidazolacetamide - Roche Pharmaceuticals, Rio de Janeiro, Brazil) was used as reference drug. Both stock solutions of Eugenol and Benznidazole were prepared in the defined medium.

Microorganism. Herpetomonas samuelpessoai (ATCC 30252) was maintained by weekly transfers in a chemically defined medium (Roitman et al. 1972) and distributed in 5 ml volumes in screw-capped tubes. Cells were grown at 28°C for 48 h and cultures were kept at 4°C.

Antiprotozoan activity. For experiment H. samuelpessoai was incubated in defined or complex medium (Roitman et al. 1972) containing different concentrations of essential oil, which were added only once to the cultures. Cells were grown in 13 x 100 mm tubes containing 1 ml of defined medium and the start inoculum consisted of the protozoan in logarithmic growth phase (1 x 106 cells/ml). After 24, 48, 72 and 96 h at 28°C or 37°C, the cell growth was estimated by counting in a haemocytometer (Improved Double Neubauer). As negative controls, defined medium alone and defined medium plus 2% Tween 80, were used. All experiments were performed in triplicate and the results expressed as log number cells/ml and as percentage of the growth inhibition at 72 h.

Viability assay. In order to evaluate the viability of the protozoa treated with essential oil, each solution was added to eppendorfs containing 1 x 105 cells in logarithmic growth phase. Immediately after the addition of the essential oil (time zero) and after 1, 2, 3, 6 and 24 h at 28°C, equal volumes (25 µl) of protozoan suspension and 0.4% erythrosine B were mixed and the cell viability was quantified by light microscopy. The preparations were made in duplicate and the percentage of viability was determined by counting at least 300 cells (Hodgkinson et al. 1980).

Light microscopy. To evaluate the morphologic changes induced by the essential oil of O. gratissimum in H. samuelpessoai, cells treated with 100 µg/ml of the oil in defined medium during 72 h, were collected by centrifugation, smeared-dried onto slides, fixed in methanol and stained for light microscopy using the “Panótico Rápido LB” stain (Laborclin Prod. Lab. Ltda., Pinhais, Paraná State, Brazil). Images were obtained using an optic microscope Olympus CBA coupled to an Image Pro-Plus program, version 4.0 (Media Cybernetics).

Ultrastructural analysis. Herpetomonas samuelpessoai treated with 100, 125 or 150 µg/ml of the essential oil, 2% Tween 80 or
medium alone, at 28°C were collected by centrifugation in intervals of 24 h and for a period up to 96 h, washed in PBS and fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2, containing 1.0 mM CaCl$_2$ at 4°C. Cells were then washed three times with 0.1 M sodium cacodylate buffer and postfixed for 1 h at room temperature in 1% osmium tetroxide plus 0.8% potassium ferricyanide and 5 mM CaCl$_2$. After rinsing, cells were dehydrated in acetone, incubated in an acetone-epon mixture (2:1, 1:1, 1:2) and embedded in Epon resin. Ultrathin sections obtained in a Reichert Ultracut E ultramicrotome were stained with uranyl acetate and lead citrate and observed in a Zeiss CEM - 900 electron microscope.

Biochemical analysis. Cells treated with 100 µg/ml essential oil and untreated cells were incubated at 28°C for 72 h, and harvested by centrifugation at 3000 g for 10 min in a refrigerated centrifuge Sorvall Super 21 (SL50T Rotor). Then, they were resuspended in a hypotonic solution (Tris-HCl 10 mM) containing 0.003 M EDTA pH 7.4; 0.6 M succinic acid adjusted to pH 7.4 with NaOH; 0.001 M cytochrome c. The specific activity was measured at 30°C, by following the reduction of cytochrome c at 550 nm.

RESULTS

A dose-dependent antiprotozoan effect of the essential oil of *O. gratissimum* is shown in Fig. 1. It was possible to observe an inhibitory effect of the essential oil on the cell growth when cells were treated with a high concentration of the drug in defined and complex media. The IC$_{50}$ (50% inhibitory concentration) in both media at 28°C were 100 and 91 µg/ml, respectively. Eugenol inhibited *H. samuelpessoai* growth at the same concentration of essential oil and Benznidazole did not induce a representative inhibition in defined medium at 28°C. Tween 80, the dilution agent, and Petrolatum oil used as indifferent oil, showed no effect on the protozoa growth (data not shown). The effects of the essential oil on growth of *H. samuelpessoai* cultured in defined or complex medium for 72 h, at 28°C or 37°C are shown in Table 1. It is possible to observe in this Table that the composition of the culture medium did not interfere with the growth inhibition of the flagellate when incubated at 28°C. On the other hand, *H. samuelpessoai* cultivated at 37°C in defined medium containing 50, 62.5 and 100 µg/ml of essential oil was inhibited more efficiently

![Fig. 1. Effect of essential oil from *O. gratissimum* (a - f); eugenol (g) and benznidazole (h) on growth inhibition of *Herpetomonas samuelpessoai* in defined medium at 28°C by 72 h. a - 20 µg/ml; b - 50 µg/ml; c - 62.5 µg/ml; d - 100 µg/ml; e - 125 µg/ml; f - 150 µg/ml; g - 100 µg/ml; h - 100 µg/ml. Results from three experiments in duplicate are shown as percentages of growth inhibition ± standard deviations.](image)

<table>
<thead>
<tr>
<th>Concentration of essential oil (µg/ml)</th>
<th>28°C</th>
<th>37°C</th>
<th>28°C</th>
<th>37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>99.3</td>
<td>97.3</td>
<td>99.2</td>
<td>98.0</td>
</tr>
<tr>
<td>150</td>
<td>98.1</td>
<td>96.7</td>
<td>98.7</td>
<td>98.1</td>
</tr>
<tr>
<td>125</td>
<td>58.2</td>
<td>96.9</td>
<td>57.5</td>
<td>98.1</td>
</tr>
<tr>
<td>100</td>
<td>50.0</td>
<td>96.3</td>
<td>56.0</td>
<td>74.3</td>
</tr>
<tr>
<td>62.5</td>
<td>21.5</td>
<td>72.1</td>
<td>30.8</td>
<td>49.0</td>
</tr>
<tr>
<td>50</td>
<td>20.0</td>
<td>74.0</td>
<td>25.0</td>
<td>30.0</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

![Fig. 2. Effect of essential oil on viability of *Herpetomonas samuelpessoai*.](image)
than when cultivated in complex medium. The inhibitory activity of the essential oil was increased at 37°C in both culture media used.

Viability of treated and control cells were assessed by the dye exclusion test. The percentage of non-viable cells, obtained by exposition of the protozoan to different concentrations of essential oil, is shown in Fig. 2. Treatment with 150 and 250 µg/ml of essential oil, in the first hour, reduced the parasite viability in 53.5% and 78.5% respectively. Low concentration of the drug did not interfere with the viability of protozoa. After 6 h of treatment, at concentration of 125, 150, and 250 µg/ml, lethality were 53.5, 58, and 97%, respectively. Morphologic alterations, such as cellular volume increase and irregular shape of the cells grown in chemically defined medium for 72 h containing 100 µg/ml of essential oil, were also observed (Figs 3-5).

In order to determine ultrastructural changes in the H. samuelpessoai treated with 100 µg/ml essential oil, electron microscopy analysis was carried out. It was possible to observe a considerable swelling of the mitochondrion, showing the inner mitochondrial membrane altered with a significant increase of the number of cristae and in some cells the mitochondrial matrix became less electron dense (Fig. 7). Concentric membranes within the flagellar pocket were also seen (Fig. 8). Similar alterations were observed when cells were cultured using eugenol (Fig. 9), which represent 67% of the composition of the essential oil, as demonstrated by Nakamura et al. (1999). These ultrastructural changes were not observed in cells cultured in the presence of Tween 80 (not shown) and in untreated cells, which showed a mitochondrion with well-distinguished membranes and a dense matrix (Fig. 6). In order to verify the activity of succinate cytochrome c reductase, an enzyme related to metabolism of this organelle, enzymatic assays were performed. The enzymatic activity of treated cells with the essential oil (2.0 ± 0.36 nmol/min/mg of protein) decreased about 5-fold in relation to untreated cells (9.7 ± 1.82 nmol/min/mg of protein).

DISCUSSION

Several species and varieties of plants of the genus *Ocimum* have been reported to yield oil of diverse nature, commonly known as basilic oils. Craveiro et al. (1981) reported some chemical components usually found in the essences of these plants, such as: eugenol, linalool, methyl cinnamate, camphor and thymol. It has been demonstrated that the eugenol isolated from *O. gratissimum* presents antibacterial (Nakamura et al. 1999) and antihelmintic activity (Pessoa et al. 2002). In the present study, when the IC_{50} of essential oil and eugenol in *H. samuelpessoai* were compared, a similar antiprotozoan activity was observed. Since eugenol is the principal constituent of the essential oil, this result suggests that it could be responsible for this effect.

Herpetomonas samuelpessoai can be easily cultivated in defined medium (free of macromolecules) showing its ability to synthesize macromolecules, for instance lipids, from compounds with low molecular weight. Silva and Oliveira (1985) reported that

Figs 3-5. Light microscopy of Herpetomonas samuelpessoai cultivated in defined medium in the presence of essential oil during 72 h at 28°C; 3 - control; 4, 5 - 100 µg/ml. Scale bar 5 µm.
Figs 6-9. Transmission electron microscopy of *Herpetomonas samuelpessoai* cultivated in defined medium with essential oil at 28°C for 72 h: 6 - control; 7, 8 - 100 µg/ml; 9 - 100 µg/ml of eugenol. Arrows showed swelling mitochondria (Fig. 7) and concentric membranes within flagellar pocket (Fig. 8). f - flagellum; fp - flagellar pocket; g - glycosome; k - kinetoplast; m - mitochondria; n - nucleus. Scale bar 1 µm.
H. samuelpessoai presents lower levels of lipids when cultivated in defined medium at 28°C and this difference is more evident in total sterol content. Rodrigues et al. (2002) suggested that ergosterol and its analogs are essential to the maintenance and organization of the mitochondrial membrane in trypanosomatids. Furthermore, it is well known that the cell membrane fluidity is highly dependent on the lipid composition. On the other hand, temperature increases causes disorganization of the hydrophobic portion of the fatty acids chains present in the membrane increasing the fluidity of this structure (Granner 1990). It was reported that the lipid composition of the cell membrane changes drastically depending on the temperature and culture conditions in H. samuelpessoai. Fagundes et al. (1980) verified a substantial increase of the total lipids when these protozoa were incubated at 37°C suggesting a balanced reposition of membrane components necessary for the maintenance of the functionality of this structure. In addition, when this flagellate was cultivated in defined medium a decrease in stearic acid content was observed (Pinto et al. 1982). Thus, in the present study the medium constitution and incubation temperature may be the adjuvant factors, responsible for the action of the essential oil as antiprotozan agent.

Benznidazole is a drug used for the treatment of the Chagas' disease, which is caused by Trypanosoma cruzi. Considering that H. samuelpessoai belong to the same family, we used this drug to compare the effect of the essential oil. Yong et al. (2000) reported values of IC₅₀ of benznidazole to the T. cruzi strains Dm28C resistant and sensitive, of 6 and 5 μM, respectively. In the present study, culture of H. samuelpessoai in chemically defined medium at 28°C, were inhibited in 31% with concentration of 384 μM of benznidazole. As IC₅₀ could not be determined even at 3840 μM, it is possible that H. samuelpessoai is naturally resistant to this compound.

Viability assay showed that cells treated with high concentrations of the essential oil caused more than 50% of cell death in the first hour of incubation. Similar results were obtained in lower concentrations of the oil after 24 h of treatment. These results were confirmed through the growth curves of the protozoa where high concentrations of the essential oil inhibited more than 95% of the growth.

Morphological alterations of H. samuelpessoai were observed after treatment with the essential oil, as seen by light microscopy. At ultrastructural level it was possible to observe significant alteration at the mitochondrial, such as a remarkable swelling and some modifications in the inner membrane like disorganization and increase of the number of cristae. We do not have an explanation to the exact mechanism involved in these alterations. However similar results have been reported in other trypanosomatids; for instance, Delorenzi et al. (2001), reported mitochondrial alterations when promastigote and amastigote forms of Leishmania amazonensis were treated with a purified indole alkaloid, obtained from the crude extract of stem of Peschiera australis (Apocinaceae). Analog alterations were observed in this organelle in promastigote forms of L. amazonensis when submitted to the treatment with a purified chalcone of Piper anduncum (Torre-Santos et al. 1999). Rodrigues et al. (2002) reported that the treatment of L. amazonensis with 22,26 - azasterol, an inhibitor of ergosterol synthesis, induced a marked alteration in the inner mitochondrial membrane, with the formation of elaborated and complex structures. Other studies reported similar alterations in epimastigote and amastigote forms of T. cruzi treated with different compounds (Lazardi et al. 1991).

Due to these ultrastructural alterations at the mitochondrial, the activity of a well-known marker enzyme involved in the respiratory chain, the enzyme succinate cytochrome c reductase, was evaluated. Cells treated with essential oil of O. gratissimum showed a decreasing in enzymatic activity as compared with control cells. Some studies have shown that the linchochalcone A, an oxygenated chalcone, showed a potent antimalarial and antileishmanial activity. This compound also altered the mitochondrial morphology and inhibited the activity of the mitochondrial dehydrogenase (Chen et al. 1994, Zhai et al. 1995). Recently these authors investigated the action mechanism of this chalcone focusing the respiratory chain of L. major and L. donovani. The authors showed that several important enzymes of the electron-transport systems were inhibited, including the enzyme succinate cytochrome c reductase (Chen et al. 2001).

In conclusion, the study of the medicinal plant effect on the trypanosomatid H. samuelpessoai here reported demonstrates the utility of this flagellate as a biologic model in the evaluation of cellular alterations induced by drugs. This model is capable of mimic events that happen in pathogenic microorganisms as T. cruzi, Leishmania sp., T. brucei and even in phytopathogenic.
trypanosomatid. The results obtained with the essential oil of *O. gratissimum* open perspectives to find more effective drugs of vegetal origin, less toxic and available for low socioeconomic population in the treatment of these diseases.

References

Corrêa M. P. (1932) Dicionário das plantas úteis do Brasil. IBDF, Rio de Janeiro

Received on 4th April, 2003; revised version on 16th June, 2003; accepted on 14th July, 2003

Ocimum gratissimum oil effect on Trypanosomatid 275

Lewis E. M. (2001) Should we be concerned about herbal remedies. *J. Ethnopharmacol.* **75**: 141-164

